
VJ2018 — 10TH CONFERENCE ON VIDEOGAME SCIENCES AND ARTS

38

Military confrontations
simulator for the training
of army officers
TIAGO PEREIRA,1 PEDRO A. SANTOS 2

In this paper we present a study about the requirements of a mili-
tary simulator for officer training, together with an architecture for
their implementation in existing commercial frameworks which
are low-priced or free, and which allow for the development of a
constructive simulator. The proposed system has the advantage of
being more affordable than existing military simulators. To demon-
strate the viability of using one of the studied frameworks to devel-
op a military simulator, a prototype was developed and tested with
the target audience (military personnel). From its tests in can be
concluded that the developed prototype and consequentially the
created model, can fulfil the proposed objective.

Military simulation;
Low cost simulation;
Wargame;
Warfare

1 Instituto Superior Técnico / INESC-ID, Universidade de Lisboa, Portugal
pedro.santos@tecnico.ulisboa.pt
2 Instituto Superior Técnico / INESC-ID, Universidade de Lisboa, Portugal
tiago.f.pereira@tecnico.ulisboa.pt

AB
ST

RA
CT

KE
YW

O
RD

S

mailto:pedro.santos%40tecnico.ulisboa.pt?subject=
mailto:tiago.f.pereira%40tecnico.ulisboa.pt?subject=

39

As modern military training can be very costly in terms of time and
resources, it must be as efficient as possible. A part of that cost
comes from operating military equipment, like weapons and ve-
hicles, during training. A way to reduce that cost is to combine re-
alistic simulation with the usual forms of military training. In this
work, a realistic simulator is one that has a behaviour that is close
enough to its real counterpart for training purposes. While simu-
lation does not completely replace training with the actual equip-
ment, as it cannot emulate all of its particularities, it can reduce
the time soldiers need to use the actual equipment to learn how
to use it, saving both resources and time, since a simulator is al-
ways ready, but the environment may not always be favourable for
training with the actual equipment. For officer training, simulators
allow for the construction of environments where the various en-
tities and realities of warfare are simulated. As such, these simu-
lators allow for officers to experience the stress and pressure of
those kinds of situations, without employing the actual equipment
or spending the necessary resources and space to simulate them
in the real world in military exercises.

Realistic military simulators are complex and costly to buy and main-
tain. For example, VBS3, one of these military simulators, has a
cost of $3,0003 per seat, disregarding the price of the computers
to run the software. The prices for other simulators in the market
are not public. Furthermore, their use implies that the military of-
ficers in charge of training must be familiarized with the simulator
to be able to design and create training sessions with it. This paper
attempts to demonstrate that it is possible to create a military sim-
ulator, with the required characteristics to be successfully used in
the training of officers, relying only on cheap or free frameworks,
lowering the cost of that simulator.

3 While this price was obtained from the Bohemia Interactive store, the web page is not directly available from
their website. The page’s address is: https://store.bisimulations.com/products/VBS3-Seat-License, accessed
on 7th of May

TIAGO PEREIRA — PEDRO A. SANTOS

INTRODUCTION1.

https://store.bisimulations.com/products/VBS3-Seat-License

VJ2018 — 10TH CONFERENCE ON VIDEOGAME SCIENCES AND ARTS

40

Some questions emerge: Which are the requirements of a military
simulator for officer training? Is it possible to use an open frame-
work or a game engine to create a more affordable simulator? And
will that simulator be able to deliver a sufficiently accurate situa-
tion to be used for the training of military commanders?

In the present work we will:

• Make explicit the main attributes which create a realistic military
simulation;

• Define the requirements of a virtual simulator to train officers;
• Suggest a possible system developed using free or cheap devel-

opment tools which can be used to simulate war situations to
train military officers;

• Describe the results of a Proof of Concept (POC) that was devel-
oped to demonstrate the capabilities of the studied tools and of
the proposed model.

In Section 2 some theoretical concepts essential for the understanding
of this paper will be explained. In Section 3, the requirements for
a military simulation are presented. Section 4 explains the model
which answers those requirements while Section 5 describes how
the proof of concept was implemented, tested and validated. Fi-
nally, the document’s conclusions are presented.

There are several concepts that describe a military body’s structure,
its composition and behaviour. For composition, the military uses
Tables of Organization and Equipment (TOE), which describe mil-
itary units with regards to their mission, capabilities and internal
structure in terms of units and equipment (Headquarters Depart-
ment of the Army 1997). For a unified behaviour, the military de-
fines its military doctrine, which specifies a framework for the var-
ious actions to be performed. A military doctrine usually comes
from the core beliefs of the military, standardizing the conducted
operations and providing a common lexicon for the various lead-
ers and planners to use in their communications (Jackson 2017).

The second concept which must be studied is simulation. Simulation
exists in three different variants: live, virtual and constructive. Live
simulation involves real people operating real systems. For exam-
ple, when a tank is equipped with a live simulation system, it uses
laser pointers to determine where a fired shell would land, actual
shells thereby not being spent. Virtual simulation is described as
real people operating virtual systems. An example of virtual sim-
ulation is the use of a simulator with specialized controls (repro-
duction of the vehicle’s cockpit). Finally, constructive simulation

THEORETICAL
BACKGROUND

2.

41

consists in having simulated people operate simulated systems.
An example would be an entire virtual scenario where every enti-
ty is controlled by a computer, according to pre-defined rules. In
a military context, constructive simulation is used as a Decision
Support System (DSS) to determine the best approach to a given
situation (Santos 2012).

Although military simulators for the training of military officers are
wargames, they differ from videogames because of their purpose:
as they seek to create a realistic simulation, the duration of the
sessions, with longer ones and the characteristics of the units, in
terms of both their equipment and behaviour (their interactions
with the environment and the tactics employed), will be analo-
gous with reality. To study how these concepts are actually em-
ployed in simulators in use by military forces, we analysed three

 different simulators:

• Tac Ops4;
• Masa Sword;
• MÄK Combat Staff Training.

It could be gathered that these simulators share some of their char-
acteristics, which we will describe in the next Section and make
explicit the requirements of a military simulator.

The following requirements contribute to understanding what is to be
expected of a military simulator. We have drawn both from the pre-
liminary analysis of the requirements of a constructive simulator
proposed by (Cunha 2011), and from our own interviews with the
officers responsible for constructive and virtual simulators, con-
ducted at the Portuguese Military Academy4 at their simulation
centre, and at the Institute for Higher Military Studies.5

Architecture requirements deal with the general aspects of the simu-
lator, discussing its purpose and main components.

The system should be designed to help train any officer, offering the
possibility of being used by the different scales of command, as

4 Responsible for the training of the lower echelons of military command.
5 Responsible for the training of the higher echelons of military command.

MILITARY
SIMULATOR
REQUIREMENTS

ARCHITECTURE
REQUIREMENTS

3.

3.1

TIAGO PEREIRA — PEDRO A. SANTOS

VJ2018 — 10TH CONFERENCE ON VIDEOGAME SCIENCES AND ARTS

42

it should be possible to change the scenario dimensions and the
size of formations. The sessions should run in real-time with the
possibility of manipulating the time scale in order to suit the ses-
sion’s needs and purpose. This way, the trainee can experience the
pressure of a war situation and understand how timing is relevant
in military decision-making.

In order to reduce deployment costs, the system should be distrib-
uted, with a server making the calculations and the clients send-
ing commands to the server (through orders) and visualizing the
simulation. As the system is distributed, only the server will re-
quire a bigger investment, as the solution should be lightweight for

 the terminals.
When connecting to a session, the new client can play different roles,

in accordance with the training officers’ needs.
The different roles are:

• Officer – plays the role of a commander, controlling part of the
simulated forces;

• Instructor – umpire role. It can influence the scenario status
(changing the timescale or other aspects of the session), can is-
sue orders to all the forces and introduce new units at any time
during the session;

• Radio Operator – does the mediation between the trainees
and the high command (Trainer), requesting air or artillery sup-
port or sanitary operations. In this role, the user will not see
the simulation.

It should be possible to record each session, integrating the orders
taken by each faction, the evolution of the state of the simulation
and the communications in the different channels. The informa-
tion can then be selected to preview and export to a video file.

Units requirements determine how the simulated units should be
designed inside the simulator. Since the purpose was to create a
military training tool, the behaviour and equipment was based on
armed forces around the world. The behaviour is based on the mil-
itary doctrine, but it should be customizable via the Standard Op-
erating Procedures (SOP), for either a subset or all the controlled
units. For example, if the commander desires to place scouts near
the front, they should not engage enemy units.

During the interview with military officers of the Military Academy, it
was mentioned that it should be possible to configure areas where
a given unit should open fire if it sees an enemy unit.

UNITS
REQUIREMENTS

3.2

43

Engineering units should allow for changing the terrain by building
bridges or entrenching a position, helping friendly units or hinder-
ing enemy units by deploying minefields or other obstacles.

Other orders that were considered to be important, for the infantry
units, are their ability to garrison in structures, upgrading the unit’s
line-of-sight and resistance, and the possibility of boarding vehicles.

Lastly, mechanics requirements discuss general functionalities that
the simulator should contain.

The scenarios where the simulation session takes place should be
possible to create and edit. They should take place in real loca-
tions on the world and so the simulator should be able to import
terrain information in order to create them. The generated terrain
is one of the crucial parts of the simulator as it influences the unit’s
speed (some units cannot move in all kinds of terrain) and line

 of sight.
Another important system is the weather system as it affects the sce-

nario as a whole, changing the unit’s line-of-sight and movement
capabilities. As with all other features, clients connected as an in-
structor can change the weather at any given time. Other features
that should exist in the simulator are:

• Sanitary and logistic operations;
• Artillery and air missions;
• Malfunctions;
• Information operations;

Regarding sanitary and logistic operations, they should be represent-
ed from their inception until their end, there being the possibil-
ity of being disrupted by the enemy. This contributes to provide
a realistic simulation as in the battlefield any units are subject to
enemy fire.

Concerning the artillery, fire missions should distinguish between
planned fire or non-planned fire, affecting the time that the artil-
lery needs to fire and reflecting the calculations the artillery crew
needs to make before firing. Besides the type of fire, it should
also be possible to choose the munitions and the number of sal-
vos of each fire mission. Air missions are to be configured in a

 similar manner.
Finally, regarding malfunctions, they could happen at either a unit lev-

el (vehicle malfunction, weapon jamming), which can disable or
reduce the efficiency of the units or at the communication level.

TIAGO PEREIRA — PEDRO A. SANTOS

MECHANICS
REQUIREMENTS

3.3

VJ2018 — 10TH CONFERENCE ON VIDEOGAME SCIENCES AND ARTS

44

Malfunctions can originate from either electronic warfare or from
sabotage. Other features found to be required are:

• Stacking of the unit markers when they are near each other on
the map, in order to reduce clutter. The various units contained
in the stack are then accessed via the context menu when the
stack is clicked.

• The generated map should display a grid over it, like military
maps, so that trainees must calculate the positions to reference
them. Instructors, however, can access the position calculations
directly and can draw over the map, if needed.

The coming section presents our proposed architecture to satisfy the
requirements identified.

This Section describes our proposed solution for a realistic military
simulator. The requirements identified in the preceding section al-
low the system to provide realistic behaviour.

Since the proposed system is complex, it was divided in different
modules (as seen in Figure 5):

• Simulation Interface – this module will contain the code re-
quired to draw the interface through which the client interacts
with the simulation. The interface changes depending on the
user’s role.

• Simulation Database – the system will keep the various types
of information used by the simulator (Table of Organization and
Equipment, Doctrines, Formations, military equipment, maps,
scenarios) in a database;

• Scenario Database – module to be used by the trainers to create
and store the scenarios for their trainees by combining the vari-
ous types of information in the simulator’s database;

• Simulation server – central module of the system which will do
most calculations required by the simulation, like hit calculation
and movement processing;

• Voice Communications – Voice-over-IP (VOIP) module which
will guarantee voice chat between the different instances of the
simulator, with the option of choosing between channels;

• HLA/DIS Interface – this module will implement the HLA and
the DIS standards in order for the projected simulator to com-
municate with other compliant simulators;

• Archives – will offer the possibility of recording the played sce-
narios for after-action reviews, further enhancing the learning
possibilities. The recording will display the orders given by the

SOLUTION
MODULES

4.1

SOLUTION
ARCHITECTURE

4.

45

different factions throughout the duration of the play, the com-
munications between the different players allowing to see the
action developing on the map.

They are connected in the manner shown in the following scheme:

The units will be kept in the information database and characterized
by different attributes, depending on their type, for instance:

• Equipment used by the unit;
• Ammunition – kinds and quantities of ammunition currently in

possession of the unit;
• Armor (divided into front, back, sides and top), when applicable;
• Movement capabilities in the different kinds of terrains.

In addition to these characteristics, the unit’s experience, status (un-
der fire, moving, standing still or others) as well as the terrain, both
the one at the unit’s location and the one crossed during the bul-
lets voyage, will influence the capacity of the unit to engage effec-
tively the enemy units.

The units are organized hierarchically by using an implementation of
a TOE. More specifically, a TOE’s internal structure is implement-
ed using two types of nodes: Basic nodes and Composite nodes.
Both nodes share the attributes derived from their representation
during the simulation like their NATO symbol, size symbol and its
type (combat unit, support unit). However, some attributes, like
the unit’s equipment or its soldier count, depend on the subunits
that it is made of. More specifically, in a basic node, it is possible

INFORMATION
EDITOR

VOICE COMMUNICATIONS

SCENARIO
EDITOR

SIMULATION
INTERFACE

FRONT-END BACK-END

SIMULATION
SERVER

EXTERNAL
SIMULATION

HLA/DIS INTERFACE

UMPIRE

OFFICERS

INFORMATION
DATABASE

ARCHIVES

SCENARIO
EDITOR

Fig. 1
Internal modules of
the Simulator and their
relationships.

TIAGO PEREIRA — PEDRO A. SANTOS

VJ2018 — 10TH CONFERENCE ON VIDEOGAME SCIENCES AND ARTS

46

to define directly the number of soldiers that the unit contains and
the equipment it uses, as well as the attributes mentioned be-
fore. When creating composite units, it is not possible to define
all the same attributes as in the basic units: their values will be
automatically known by considering the subunits that are added
to them. These subunits can be either basic nodes or other com-
posite nodes.

As such, the person that is creating/ editing a TOE starts by defining
the equipment that a unit can use, then the basic units and then
the composite units using those basic units and other composite
nodes, creating a tree like in a real TOE.

The internal components of a TOE can be seen in Figure 2. The TOE
is used to define two other types of information: Formations and
Doctrines. While TOE usually defines an abstract unit, Formations
are used to define specific units, using as a base a specific TOE.
For example, if we wanted to define an infantry company called
the 4th Infantry Company, first we would have to define what is
an infantry company, and then, by using that TOE as a base, we
would construct a Formation with the desired name. A Formation
allows us to create instances based on the units created in the TOE
and so customize their characteristics, like their name, to create
a unique unit. Formations are the entities that will be spawned
and controlled by the commanders during a simulation and whose
subunits are assigned orders by their commanders. For example,
a company commander assigned to 1st Company as defined in Fig-
ure 3, will issue orders to all its direct subunits, the three platoons.

Fig. 2
Internal constitution
of a TOE instance.

EQUIPMENT

NUMBER
OF SOLDIERS

BASE UNIT↻ COMPOSITE
UNIT

47

Doctrines are used to define the orders which are executed by each
unit, as defined in a TOE. As such, the orders are hierarchical by
nature. When a unit, controlled by an Artificial Intelligence (AI), re-
ceives an order, its doctrine will determine how it will be translated
into orders that can be executed by the unit.

These orders are constructed using actions, which can be of three dif-
ferent types: basic, composite or general. Each action within an
order is associated with a specific subunit.

Actions can be associated with an interrupt condition, which allows
for them to have another way to be completed, allowing a greater
control of the timing in which the subunits execute their orders.
For example, if a movement order is issued to a given point but it
has a condition of being near another determined unit, then this
order will end either when the unit has reached that destination or
if it is close to that pre-determined unit.

General actions are the ones which can be added to any level of the
hierarchy. An example of such an action is the wait action. Basic
actions are implemented on the units themselves, as they corre-
spond to the actions that any trained soldier can execute and are
used to construct the composite actions. They are associated to
any echelon which is not associated with an officer, like squads or
fireteams. Both general and basic actions are static in the sense
that a user cannot add new actions of these types, only the devel-
oper by editing the simulator internal code.

HUMAN or
AI COMMANDER

AI COMMANDER

PLATOONPLATOON

SQUAD SQUAD SQUAD SQUADSQUAD SQUAD

PLATOON

COMPANY
Commander above
it (Battalion) issues
orders to it

...

Commander above
it (Company) issues
orders to it

Commander above
it (Platoon) issues
orders to it

Fig. 3
Hierarchy and commanders
in the simulator.

TIAGO PEREIRA — PEDRO A. SANTOS

VJ2018 — 10TH CONFERENCE ON VIDEOGAME SCIENCES AND ARTS

48

Finally, composite actions are the ones which give the simulator
flexibility by providing the users with the ability to construct any
manner of orders, by applying together the various action types.
Composite actions are built in any echelon which does not have
basic actions and each one corresponds to an order that can be
given to the unit during a simulation. When a user defines a new
order, he can construct different action sets, which allows for the
same order to be completed by the AI in different ways, depending
on the conditions associated with each one. If there is more than
one condition which is verified at a time, the action set is chosen
from the restrictiveness of that condition. For example, if an order
for movement was created for a platoon but the manner in which
that platoon moves is dependent on expected danger during the
order’s fulfilment,6 then different action sets would be created,
each one with an appropriate condition, which would allow for the
AI to have a behaviour similar to that of a platoon if it had been
commanded by a human.

A doctrine uses the logic of a Hierarchical Task Network (HTN)
 (Russel e Norvig 2003) decomposer to construct a hierarchy of
 the orders:

1. Orders given to units above squad level are all composite orders
(or composite tasks);

2. The doctrine describes how a composite order is decomposed
into a set of orders belonging to the level below (either them-
selves composite or basic actions);

3. The decomposition ends when the given order has been trans-
formed into a set of basic actions;

4. Each order can have attached to it constraints, which finish the
order prematurely.

TOE, Doctrines and Formations, are related in the manner depicted in
Figure 4.

6 The video “The Rifle Platoon Dismounted Movement Techniques”, available on https://www.youtube.com/
watch?v=-qdFd9Uh0N0, for instance, shows how an infantry platoon adapts their movement tactics depending
on the contact probability.

1 1

* *

DOCTRINE FORMATION

TOE
Fig. 4
Relations between the
concepts of TOE, Doctrines
and Formations

https://www.youtube.com/watch?v=-qdFd9Uh0N0
https://www.youtube.com/watch?v=-qdFd9Uh0N0

49

Also contained in the database are the maps used to create the
scenarios. These are loaded and interpreted by the simulation
that defines 2D representations of the terrain (with a distinc-
tion between types of terrain and height) as the setting for the

 simulation sessions.
In addition to having the stacking behaviour described earlier, the

units can be merged (if compatible) or separated as necessary.
When there is a stack of independent units, there will be a visual
cue informing of the situation.

As the proposed architecture is highly complex, a POC was developed.
The following Section describes the POC that was developed to
demonstrate the feasibility of creating a military simulator by us-
ing a cheap or free development framework and how that solution
achieves the purposed objectives.

This section describes the POC that was implemented to demonstrate
the feasibility of the model described in the previous section. We
will also describe how we tested our POC, how we prepared the
tests, how they were conducted and their respective results. As
the POC was created to show the potential that our proposal has,
our tests were aimed to demonstrate that the current internal cal-
culations of the simulation could be deemed as realistic.

Having analysed three different options to create a military simulator,
what was chosen was Unreal Engine, justified by these facts:

• Using Unreal Engine allows for just focusing on the actual logic
of the simulator instead of how to code it, because of the exist-
ence of blueprints. Without them, it would be necessary to rea-
son what exactly would be the correct library to use or if it was
necessary to code it.

• Unreal’s community is active, which eases the process of
understanding the reason for any difficulty that emerges
during development;

• There is a large quantity of Unreal Engine tutorials online;
• Unreal Engine’s documentation is extensive;
• Nodes were created by experts in both Unreal Engine and

C++, which guarantees a certain level of performance when
using them;

• Unreal Engine also has a marketplace where there are free pl-
ugins which extend the functionality of the engine;

• The client-server communications in Unreal Engine are close to
the simulator’s goal, where the server does all the calculations
and the client shows the results from those orders.

TIAGO PEREIRA — PEDRO A. SANTOS

SOLUTION
IMPLEMENTATION
AND VALIDATION

5.

VJ2018 — 10TH CONFERENCE ON VIDEOGAME SCIENCES AND ARTS

50

Although some of these features are also present in other game en-
gines, like Unity, we have chosen Unreal Engine due to previous
experience in working with it.

This POC’s objective is to implement a simplified version of the pro-
posed architecture to demonstrate its potential to create a lower
priced military simulator and the possibilities that a game engine
such as Unreal Engine offers for this kind of project. The developed
POC focused in implementing features of three of the modules dis-
cussed in Section 4.1, namely the Simulation Interface, the Simu-
lation Server and the Unit Database.

The Simulation Server was constructed by making sure that functions
which have an impact on the gameplay are called in the Server ver-
sion of the various entities in the game world, and so its code is
spread across the various classes.

As stated in Section 6.1, the doctrine will be used to customize the
behaviour of the AI controlled units, and so, separate the unit’s
implementation from its behaviour in the simulation.

In the POC, this was implemented by separating the functionality of
a doctrine in separate classes, each one with a separate function
within the overall functionality of our concept of a doctrine. The
various classes are used sequentially during the decomposition of
the orders. During the decomposition process, if there is an inter-
rupt condition attached to the action, it is added to unit’s black-
board, and is verified via a service in the behaviour tree, until either
the condition is verified itself and the order is skipped, or the order
reaches its supposed end.

SIMULATION
SERVER
IMPLEMENTATION

DOCTRINE

5.1

5.2

51

In Figure 5, it is possible to see an example of an invocation of a com-
posite order. The commanders can either be human or an AI. If it
is an AI-controlled commander, the doctrine will determine how
the order is decomposed to be interpreted by the next echelon. If
not, then the human commander must know how to decompose
that order.

In order to validate our prototype, we performed two sets of tests: one
for the system usability, where we used the SUS (Brooke 2013),
and another to evaluate its realism.

The first set of tests had the following results, scored from 1 to 100:

• 55 for the Information Editor;
• 56 for the Scenario Editor;
• 71 for the Simulation Editor;

These results point to serious problems with the system’s usabili-
ty, particularly on the Information Editor and the Scenario Edi-
tor. However, as the users who performed the tests were not the
end-users for this system, these tests’ results are not conclusive.

The second set of tests had the purpose of evaluating the realism that
the current POC offers in terms of military behaviour and as such
could only be performed by persons which had some degree of
understanding of military tactics. More specifically, the tests were
made by connecting 3 users to the simulator and having them play
different roles, with 2 players occupying the roles of commanders
and one occupying the position of the Umpire, alike the training
done at the Military Academy.

COMPANY
COMMANDER

COMPANY
COMMANDER

SQUAD C

SQUAD C

SQUAD B

SQUAD B

SQUAD A

SQUAD A

Powered by SWIMLANES.IO

PLATOON
COMMANDER

PLATOON
COMMANDER

March Order

Follow Order

Follow Order

Movement Order

Interpret order
with doctrineFig. 5

Invocation of
a composite
order.

TIAGO PEREIRA — PEDRO A. SANTOS

VALIDATION5.3

VJ2018 — 10TH CONFERENCE ON VIDEOGAME SCIENCES AND ARTS

52

We invited officers from the Military Academy to view the model and
the developed prototype, to understand its state and receive feed-
back about its features.

After finishing the tests and the various officers having taken part in
the exercise and demonstrations, the officers focused on the fol-
lowing points:

• The program is simple to understand and manipulate, reinforc-
ing that understanding of military concepts is important to un-
derstand the program’s interface and the flow of the program.
Therefore, the interface and usability were considered adequate
by the end-users.

• The program can integrate with other tools in a seamless way.
For example, its ability to use real terrain information and hav-
ing that terrain information directly translated into the simulated
world. One of the major disadvantages of the current systems
used by the military is the lack of interoperability between the
various tools that exist. For terrain information, the military has
a tool which allows to export all the relevant information about
the terrain, such as, where does the terrain give cover and where
do the different units are able to navigate.

• Despite being very basic in the POC, the unit’s AI behaviour fol-
lows a doctrine, which is very important in a simulator.

However, the officers also pointed out some errors in our model
 and POC:

• Usually, the Platoon commanders do not micro-manage the in-
fantry squads as was implemented. They manage the support
squads (like those with mortars or machine guns) directly, but
they command the infantry squads in a more general way. For
example, it should be possible to define itineraries for those
squads to follow instead of ordering them directly.

In the next Section, we present the conclusions of the developed work.

In this paper, a proposal for an architecture of a realistic military con-
structive simulator was presented. However, given the high quanti-
ty of requirements defined and the relative short time for develop-
ment, only a proof of concept of this system could be constructed,
in order to demonstrate the possibilities of low-cost development
software to create traditionally costly software. To construct the
proof of concept, Unreal Engine was used, as it allows for the rapid
development of prototypes via the blueprint system.

The major contributions of this work, in terms of the requirements
described in Section 4, are related to the architecture and units’

CONCLUSIONS6.

53

requirements: by creating units through TOE as described in Sec-
tion 4, it is possible for the units to belong to any echelon and thus
different scales of command can be simulated. The adaptable
behaviour that the units should have is supported with a doctrine
as described in Section 4. More specifically, this implementation
allows for the creation of orders for any unit (from platoon level to
the upper echelons) by defining orders for a given unit, using the
orders defined for the units it is composed of. For example, if an
infantry platoon is constructed from three infantry squads, the or-
ders for the infantry platoon will be defined according to the orders
available to the infantry squads. Besides the actions associated
with each unit, the system chooses the most appropriate actions
according to conditions associated with each set of actions.

A game engine, like Unreal Engine, offers the server-client architec-
ture that is required. Regarding the mechanics requirements, by
using a game engine, we are offered the AI functionalities required
to differentiate the types of terrain and to create an influence map.
Although Unreal Engine offers a great set of built-in features, these
are skewed for a certain type of games. It was therefore necessary
to work against the original purpose of the engine’s features in or-
der to repurpose them to a different type of creations, like the one
discussed in this paper.

Note that by having the simulation engine built, new scenarios are rel-
atively easy and fast to create, as all the previously used units can
be repurposed for the new scenario. One just needs to import the
physical terrain into the simulator and place the appropriate units
to create a new training situation.

The programming work to produce this POC was 5 man-months. The
results obtained from the tests demonstrate that our hypothesis
(that it is possible to develop a realistic military simulator for the
training of army officers using a cheap or free development frame-
work) can be fulfilled by the model which we created. Furthermore,
it can also be conjectured that if the proposed system is execut-
ed without assigning human players any position, the simulation
can run by itself, transforming an otherwise virtual simulator into a
constructive simulator.

While it was possible to create a POC which demonstrates the poten-
tial of the proposed model, future work in implementing it should
be done in code, as only then will it be possible to access the total
potential of Unreal Engine. By using code, the simulator will be-
come more efficient, more portable as well as more stable. As stat-
ed above, we focused mainly on the architecture and the unit’s re-

TIAGO PEREIRA — PEDRO A. SANTOS

FUTURE WORK6.1

VJ2018 — 10TH CONFERENCE ON VIDEOGAME SCIENCES AND ARTS

54

quirements, as they were more important for our purposes, further
requirements being left for future work. An engine like Unity would
have had a better support for these types of programs, as users
usually have to implement their own versions of features which
are offered by Unreal Engine, making Unity more flexible.

We predict that to produce a first deployable version one would need
about 18 man-months for the simulation implementation and 6
man-months dedicated solely to the interface.

We would like to thank all the army officers who collaborated with
us during the development of this work. We also acknowledge the
support of the Unreal Engine’s community, particularly Victor Bur-
gos, for helping with understanding the system’s inner workings.
This work has been partially supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with reference UID/
CEC /50021/2013;

Brooke, John. 2013. “SUS: A Retrospective.” Journal of usability studies 8 (2):
29-40. Accessed 05 08, 2018. https://usabilitygeek.com/how-to-use-the-
system-usability-scale-sus-to-evaluate-the-usability-of-your-website/.

Cunha, André. 2011. O emprego do sistema de simulação constructiva como
ferramenta de apoio à decisão; uma proposta ao exército brasileiro. Master
Thesis, São Paulo: Escola de comando e estado maior do exército.

Global Security. n.d. Global Security. https://www.globalsecurity.org/military/
library/policy/army/toe/toenum.htm.

Headquarters Department of the Army. 1997. “Force Development and Docu-
mentation - Consolidated Policies.” Washington, DC.

Jackson, Aaron P. 2017. “The Nature Of Military Doctrine: A Decade of Study
in 1500 Words.” The Bridge. 15 November. Accessed April 7, 2018. https://
www.realcleardefense.com/articles/2017/11/15/the_nature_of_military_
doctrine_a_decade_of_study_in_1500_words_112638.html.

Russel, Stuart J., and Peter Norvig. 2003. Artifical Intelligence: A Modern Ap-
proach. Person Education.

Santos, João. 2012. A Simulação. Contributos para a formação e treino. Master
Thesis, Lisboa: Academia Militar. Direção de Ensino.

U.S. Department of Health & Human Services. n.d. “System Usability Scale
(SUS).” usability.gov. Accessed May 08, 2018. https://www.usability.gov/
how-to-and-tools/methods/system-usability-scale.html.

Wayman, Erin. 2012. “What is War Good For? Ask a Chimpanzee.” Slate. Out-
ubro. Accessed December 6, 2016. http://www.slate.com/articles/health_
and_science/human_evolution/2012/10/chimpanzee_wars_can_primate_
aggression_teach_us_about_human_aggression.html.

AKNOWLEDGMENTS

REFERENCES

https://usabilitygeek.com/how-to-use-the-system-usability-scale-sus-to-evaluate-the-usability-of-your-website/
https://usabilitygeek.com/how-to-use-the-system-usability-scale-sus-to-evaluate-the-usability-of-your-website/
https://www.globalsecurity.org/military/library/policy/army/toe/toenum.htm
https://www.globalsecurity.org/military/library/policy/army/toe/toenum.htm
https://www.realcleardefense.com/articles/2017/11/15/the_nature_of_military_doctrine_a_decade_of_study_in_1500_words_112638.html
https://www.realcleardefense.com/articles/2017/11/15/the_nature_of_military_doctrine_a_decade_of_study_in_1500_words_112638.html
https://www.realcleardefense.com/articles/2017/11/15/the_nature_of_military_doctrine_a_decade_of_study_in_1500_words_112638.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
http://www.slate.com/articles/health_and_science/human_evolution/2012/10/chimpanzee_wars_can_primate_aggression_teach_us_about_human_aggression.html
http://www.slate.com/articles/health_and_science/human_evolution/2012/10/chimpanzee_wars_can_primate_aggression_teach_us_about_human_aggression.html
http://www.slate.com/articles/health_and_science/human_evolution/2012/10/chimpanzee_wars_can_primate_aggression_teach_us_about_human_aggression.html

